On partial sparse recovery
نویسندگان
چکیده
We consider the problem of recovering a partially sparse solution of an underdetermined system of linear equations by minimizing the l1-norm of the part of the solution vector which is known to be sparse. Such a problem is closely related to a classical problem in Compressed Sensing where the l1-norm of the whole solution vector is minimized. We introduce analogues of restricted isometry and null space properties for the recovery of partially sparse vectors and show that these new properties are implied by their original counterparts. We show also how to extend recovery under noisy measurements to the partially sparse case.
منابع مشابه
A Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملSparse Recovery with Partial Support Knowledge
The goal of sparse recovery is to recover the (approximately) best k-sparse approximation x̂ of an n-dimensional vector x from linear measurements Ax of x. We consider a variant of the problem which takes into account partial knowledge about the signal. In particular, we focus on the scenario where, after the measurements are taken, we are given a set S of size s that is supposed to contain most...
متن کاملSparse Frequencies Extracting from Partial Phase-Only Measurements
This paper considers a robust recovery of sparse frequencies from partial phase-only measurements. With the proposed method, sparse frequencies can be reconstructed, which makes full use of the sparse distribution in the Fourier representation of the complex-valued time signal. Simulation experiments illustrate the proposed method’s advantages over conventional methods in both noiseless and add...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملSparse Recovery via Partial Regularization: Models, Theory and Algorithms
In the context of sparse recovery, it is known that most of existing regularizers such as `1 suffer from some bias incurred by some leading entries (in magnitude) of the associated vector. To neutralize this bias, we propose a class of models with partial regularizers for recovering a sparse solution of a linear system. We show that every local minimizer of these models is sufficiently sparse o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1304.2809 شماره
صفحات -
تاریخ انتشار 2013